Optoelectronic retinal prosthesis: system design and performance.
نویسندگان
چکیده
The design of high-resolution retinal prostheses presents many unique engineering and biological challenges. Ever smaller electrodes must inject enough charge to stimulate nerve cells, within electrochemically safe voltage limits. Stimulation sites should be placed within an electrode diameter from the target cells to prevent 'blurring' and minimize current. Signals must be delivered wirelessly from an external source to a large number of electrodes, and visual information should, ideally, maintain its natural link to eye movements. Finally, a good system must have a wide range of stimulation currents, external control of image processing and the option of either anodic-first or cathodic-first pulses. This paper discusses these challenges and presents solutions to them for a system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a head-mounted near-to-eye projection system operating at near-infrared wavelengths. Photodiodes convert light into pulsed electric current, with charge injection maximized by applying a common biphasic bias waveform. The resulting prosthesis will provide stimulation with a frame rate of up to 50 Hz in a central 10 degrees visual field, with a full 30 degrees field accessible via eye movements. Pixel sizes are scalable from 100 to 25 microm, corresponding to 640-10,000 pixels on an implant 3 mm in diameter.
منابع مشابه
Design of a high-resolution optoelectronic retinal prosthesis.
It has been demonstrated that electrical stimulation of the retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. However, current retinal implants provide very low resolution (just a few electrodes), whereas at least several thousand pixels would be required for functional restoration of sight. This paper presents the design of an op...
متن کاملTowards high-resolution retinal prostheses with direct optical addressing and inductive telemetry.
OBJECTIVE Despite considerable advances in retinal prostheses over the last two decades, the resolution of restored vision has remained severely limited, well below the 20/200 acuity threshold of blindness. Towards drastic improvements in spatial resolution, we present a scalable architecture for retinal prostheses in which each stimulation electrode is directly activated by incident light and ...
متن کاملA Case study of Performance Improvement of Femur Prosthesis
Nowadays, the placement of artificial prostheses in human skeleton, etc. is common due to different reasons such as fractures or deficiencies. Prostheses are structures that assist the performance of organs by reconstruction of some body parts through different methods to enable the organ to re-obtain its performance completely or partially and, since the use of external prostheses might lead t...
متن کاملPassive Controller Design for Swing Phase of a Single Axis Above-Knee Prosthesis
In this research we design a passive controller for an above knee prosthesis. The controller is a linear spring and damper for swing phase motion, parameters of which determined via optimization of adjustment of the prosthesis shank motion with a desired shank angle trajectory comes from experimental data. In this way, we exerted a certain thigh motion, hip movement included, into the system as...
متن کاملFlexible Electrode Array for Retinal Stimulation
In this Work, ITO/PET (Indium Tin Oxide / Polyethylene Terephthalate) electrode structure which provides biocompatibility, mechanical stability and flexibility is fabricated. Flexible ITO/PET implantable electrode array for a retina has been developed. The electrode array is fabricated on a thin PET/ITO substrate and is encapsulated using, SU-8, an insulating material. PET substrate and SU-8 po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neural engineering
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2007